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Answer four questions. You are advised not to answer more than four questions: if you
do, only your best four will be counted.

1 (i) For each of the subsets J1, J2 of C speci�ed below determine, with justi�-
cation, whether it is a sub�eld of C:
(a) J1 = fa + b

p
7 : a; b 2 Qg, (5 marks)

(b) J2 = fa + b
p

7 + ci : a; b; c 2 Qg. (3 marks)

(ii) Let K be a sub�eld of a �eld L. Give a de�nition of [L : K]. (2 marks)

(iii) Consider the sub�eld L = Q(
p

7;
p

5) of C.
(a) Find [L : Q]. Justify your answer and give a Q-basis of L.

(7 marks)

(b) Prove that L = Q(
p

5;
p

35). (3 marks)

(c) Find (1 +
p

7 +
p

5)�1. The answer should be given in terms of the
basis of (a). (5 marks)
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2 (i) (a) Let K � L be a �eld extension. Explain what it means to say that
an element a 2 L is algebraic over K and what it means to say that
L is algebraic over K. (2 marks)

(b) Let K � L be a �nite �eld extension of degree n. Let y 2 L. Show
that the powers y 0; y 1; y 2; : : : ; y n are linearly dependent over K.
Deduce that L is algebraic over K. (3 marks)

(c) Let K � L be a �eld extension. Explain what it means to say that
an element t 2 L is transcendental over K. Suppose that t 2 L is
a transcendental element over K. Find [L : K]. (4 marks)

(ii) (a) Give an example of a primitive polynomial in Z[x ] and a non-
primitive polynomial in Z[x ], both of degree 3. (2 marks)

(b) De�ne the content c(f ) of a polynomial f 2 Z[x ]. Is it true that
c(f g) = c(f )c(g)? (2 marks)

(iii) (a) State Eisenstein's Irreducibility Criterion. (2 marks)

(b) Use a form of Eisenstein's Irreducibility Criterion to show that
the following polynomials with integer coe�cients are irreducible
in Q[x ]:

�x3 + 12x2 � 6x + 2; �1 + 12x � 6x2 + 2x3:

(3 marks)

(c) Prove Eisenstein's Irreducibility Criterion. You may assume without
proof that if a non-constant polynomial f 2 Z[x ] is reducible inQ[x ],
then f can be written as a product of two non-constant polynomials
in Z[x ]. (7 marks)
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3 (i) Let n be a positive integer.
(a) Give a de�nition of n-th cyclotomic polynomial �n(x). (2 marks)

(b) Show that if p is a prime number then

�p(x) = xp�1 + xp�2 + � � �+ x + 1: (4 marks)

(c) Find �n(x) for n = 1; 2; 3; 4. (4 marks)

(d) Let p be a prime number. Prove that

�p(x) = xp�1 + xp�2 + � � �+ x + 1

is an irreducible polynomial in Q[x ]. (8 marks)

(ii) Let K � L be a �eld extension, and let a 2 L be algebraic over K.
(a) Give the de�nition of the minimal polynomial of a over K.

(2 marks)

(b) Show that the minimal polynomial of a over K is an irreducible
polynomial in K[x ]. (2 marks)

(c) Let f be a monic irreducible polynomial with f (a) = 0. Show that
f is the minimal polynomial of a. (3 marks)

4 (i) (a) Specify the four standard constructions that are used in the theory
of ruler-and-compass constructions and involve perpendicular and
parallel lines. (5 marks)

(b) Give the de�nition of a constructible real number. (2 marks)

(c) Let c 2 R. Prove that c is a constructible real number if and only
if (0; c) is a constructible point in the plane. (4 marks)

(d) Let a; b 2 R. Prove that (a; b) is a constructible point if and only
if a and b are constructible real numbers. (4 marks)

(e) Let a; b 2 R be constructible numbers. Using Standard Construc-
tions I�IV prove that the numbers

a � b and a + b

are constructible (You may use the fact that a point (x; y) is con-
structible if and only if the numbers x and y are constructible).

(6 marks)

(ii) Show that the number √p
2 + 4
p

3√p
5 + 8
p

7
is constructible. State clearly any result that you use. (4 marks)
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5 (i) Give the de�nition of a �nite �eld extension. (2 marks)

(ii) State the Degrees Theorem. (3 marks)

(iii) (a) Give the de�nition of the splitting �eld for a polynomial f (x) 2 K[x ]
where K is a sub�eld of the �eld of complex numbers C.

(3 marks)

(b) Find the splitting �eld Ln of the polynomial xn�1. Find two distinct
elements a and b of Ln such that Ln = Q(a) and Ln = Q(b) where
n � 3 (justify your choices). (7 marks)

(iv) (a) Let z 2 C be a complex number. State (without proof) a necessary
and su�cient condition on the �eld extension Q � Q(z) for z to
be constructible. (2 marks)

(b) Apply the criterion from (a) to show that the number 4
p

2 is con-
structible. (2 marks)

(c) Explain what is meant by the problem of squaring the circle.
(2 marks)

(d) Explain why it is not possible to square the circle. (4 marks)

End of Question Paper
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