

SCHOOL OF MATHEMATICS AND STATISTICS

Autumn Semester 2010-2011

Fields - MAS333 2 hours 30 minutes

Answer **four** questions. You are advised **not** to answer more than four questions: if you do, only your best four will be counted.

1 (i) For each of the subsets J_1 , J_2 of $\mathbb C$ specified below determine, with justification, whether it is a subfield of $\mathbb C$:

(a)
$$J_1 = \{a + b\sqrt{7} : a, b \in \mathbb{Q}\},$$
 (5 marks)

(b)
$$J_2 = \{a + b\sqrt{7} + ci : a, b, c \in \mathbb{Q}\}.$$
 (3 marks)

- (ii) Let K be a subfield of a field L. Give a definition of [L:K]. (2 marks)
- (iii) Consider the subfield $L = \mathbb{Q}(\sqrt{7}, \sqrt{5})$ of \mathbb{C} .
 - (a) Find $[L:\mathbb{Q}]$. Justify your answer and give a \mathbb{Q} -basis of L. (7 marks)

(b) Prove that
$$L = \mathbb{Q}(\sqrt{5}, \sqrt{35})$$
. (3 marks)

(c) Find $(1+\sqrt{7}+\sqrt{5})^{-1}$. The answer should be given in terms of the basis of (a). (5 marks)

- 2 (i) (a) Let $K \subseteq L$ be a field extension. Explain what it means to say that an element $a \in L$ is algebraic over K and what it means to say that L is algebraic over K. (2 marks)
 - (b) Let $K \subseteq L$ be a finite field extension of degree n. Let $y \in L$. Show that the powers $y^0, y^1, y^2, \ldots, y^n$ are linearly dependent over K. Deduce that L is algebraic over K. (3 marks)
 - (c) Let $K \subseteq L$ be a field extension. Explain what it means to say that an element $t \in L$ is transcendental over K. Suppose that $t \in L$ is a transcendental element over K. Find [L : K]. (4 marks)
 - (ii) (a) Give an example of a primitive polynomial in $\mathbb{Z}[x]$ and a non-primitive polynomial in $\mathbb{Z}[x]$, both of degree 3. (2 marks)
 - (b) Define the content c(f) of a polynomial $f \in \mathbb{Z}[x]$. Is it true that c(fg) = c(f)c(g)? (2 marks)
 - (iii) (a) State Eisenstein's Irreducibility Criterion. (2 marks)
 - (b) Use a form of Eisenstein's Irreducibility Criterion to show that the following polynomials with integer coefficients are irreducible in $\mathbb{Q}[x]$:

$$-x^3 + 12x^2 - 6x + 2$$
, $-1 + 12x - 6x^2 + 2x^3$.

(3 marks)

(c) Prove Eisenstein's Irreducibility Criterion. You may assume without proof that if a non-constant polynomial $f \in \mathbb{Z}[x]$ is reducible in $\mathbb{Q}[x]$, then f can be written as a product of two non-constant polynomials in $\mathbb{Z}[x]$. (7 marks)

- 3 (i) Let n be a positive integer.
 - (a) Give a definition of *n*-th cyclotomic polynomial $\phi_n(x)$. (2 marks)
 - (b) Show that if p is a prime number then

$$\phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1.$$
 (4 marks)

- (c) Find $\phi_n(x)$ for n = 1, 2, 3, 4. (4 marks)
- (d) Let p be a prime number. Prove that

$$\phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$$

is an irreducible polynomial in $\mathbb{Q}[x]$.

(8 marks)

- (ii) Let $K \subseteq L$ be a field extension, and let $a \in L$ be algebraic over K.
 - (a) Give the definition of the minimal polynomial of a over K.

 (2 marks)
 - (b) Show that the minimal polynomial of a over K is an irreducible polynomial in K[x]. (2 marks)
 - (c) Let f be a monic irreducible polynomial with f(a) = 0. Show that f is the minimal polynomial of a. (3 marks)
- 4 (i) Specify the four standard constructions that are used in the theory of ruler-and-compass constructions and involve perpendicular and parallel lines. (5 marks)
 - (b) Give the definition of a constructible real number. (2 marks)
 - (c) Let $c \in \mathbb{R}$. Prove that c is a constructible real number if and only if (0, c) is a constructible point in the plane. (4 marks)
 - (d) Let $a, b \in \mathbb{R}$. Prove that (a, b) is a constructible point if and only if a and b are constructible real numbers. (4 marks)
 - (e) Let $a, b \in \mathbb{R}$ be constructible numbers. Using Standard Constructions I–IV prove that the numbers

$$a-b$$
 and $a+b$

are constructible (You may use the fact that a point (x, y) is constructible if and only if the numbers x and y are constructible).

(6 marks)

(ii) Show that the number

$$\frac{\sqrt{\sqrt{2} + \sqrt[4]{3}}}{\sqrt{\sqrt{5} + \sqrt[8]{7}}}$$

is constructible. State clearly any result that you use.

(4 marks)

- 5 (i) Give the definition of a finite field extension. (2 marks)
 - (ii) State the Degrees Theorem. (3 marks)
 - (iii) (a) Give the definition of the splitting field for a polynomial $f(x) \in K[x]$ where K is a subfield of the field of complex numbers \mathbb{C} .

(3 marks)

- (b) Find the splitting field L_n of the polynomial x^n-1 . Find two distinct elements a and b of L_n such that $L_n=\mathbb{Q}(a)$ and $L_n=\mathbb{Q}(b)$ where $n\geq 3$ (justify your choices). (7 marks)
- (iv) (a) Let $z \in \mathbb{C}$ be a complex number. State (without proof) a necessary and sufficient condition on the field extension $\mathbb{Q} \subseteq \mathbb{Q}(z)$ for z to be constructible. (2 marks)
 - (b) Apply the criterion from (a) to show that the number $\sqrt[4]{2}$ is constructible. (2 marks)
 - (c) Explain what is meant by the problem of squaring the circle.

 (2 marks)
 - (d) Explain why it is not possible to square the circle. (4 marks)

End of Question Paper

MAS333 4